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1. Introduction

The notion.of a differential equation with hereditary dependence is
by no means new, and, in fact, dates back to the very early days of the notion
cf a differential equation itself. Apparently the first mathematician to
seriously consider and investigate such dependence was John Bernoulli who
published his results in 1728. Early considerations are also to be bound
in the work of Euler. However, the problems in mechanics which had
initially suggested the introduction of hereditary differential equations
were later found to be more conveniently handled in terms of partial differen-
tial equations. ’Hence, as a consequence of a lack of further motivation
at the time and, of course, the need to first develop a substantial theory
for differential equations in the ordinary sense, further development of
hereditary dependence was left for the twentieth century. The next milestone
was the brilliant anqﬂfarsighted accomplishments of Volterrra in his
investigation of the Efowth properties of interacting species of organismso%

With the exclusion of this work, the present theory is substantially the
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product of the past twenbty years. Its developmept FOllows as s npabtural response
to the many problems recently identified in @ontrals analysis, econometries,

chemistry, biology, and medicine which are most properly described in terms of

|
differential equations with hereditary dependence, !

-

As might be expected the first hereditary differemntial equatioms to
receive general treatment were the go-called differeatial-difference equations
with constant lags, A substentisl portiom of the early work on these equations
was carried out by E. M. Wright and A. D. Mygiis in the late 1940's. During
the 1950's substantial progress was made through the efforts of a large group
of Russian mathematicians and in this country and Europe by R. E. Bellman,

K. L. Cooke, W. Hakm, and others., In 1963 & comprehensive book by

R. E., Bellman and K. L. Cocke became available on thie special clags of
hereditary egustions. Major contributions in a somewhat more gemeral setting
have been made by N. N. Krasovskif, A. Halapay, J. K. Hale, L. E. El'sgol'ts,
8. M. Shimanov, and other Russian and American mathematicisns. A general,

though far from complete, list of referances is given at the end of this paper.

iir'va this paper the author introduces a general class of differential
equations with hereditary dependence which includes most equations of hereditary
type encountered in applicatioms with the notable exception of equations of
neutral type. Furthermore;ifhe class introduced allows the develcpment of a
strong and tractable qualitative theory closely resembling that of ordinary
differential equations:? For example, much of the linear analysis and the

stability theory as developed by J. K. Hale in [21] and [22] for a more

restricted class of hereditary equutions carrles over directly. However, only
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§results;associated with existence and uniquemness of soluticns and dependence

on initiasl data and parameters will be considered hereinw‘]

——

The cortents of this paper is an expansion and somewhat reformilated
version of material develcped by the author and J. K. Hale for seminar
presentation at RIAS two years ago. More recently it has constituted part
of course presented by the author at the University of Maryland., The author
is indebted to the mathematics staff st RIAS, and imn particular to
br. J. K. Hale, for many suggestions which substantially improved the quality

of this work.

To get our discussion under way let us exhibit a few importart
special differential forms which are included in our general class. First of

all, of course, crdinary differertial equations
xt) = £(t, ={£)) {1.1)
are included. Also differential-difference equations, say of the form
x(t) = £(t, x(t), x(t - 'cl),...,x(t - 7)) (1.2)

T > Tn 1 > 0o > Ty > 0, are included as are equations involving an infinite

set of discrete retarded arguments such ag; for example,

00 7 1 - \ ,.
Ht) =« & BE=A (14 (b)), (1.3)
n=1 2

Equations where change of state invelves dependence on the state over an interval



of fixed length,
(t) = £(t, x | [t - 1, £}, (1.4)
are included; as are equations with dependence on the entire state history,
(t) = £{t, x| (-, t1). (1.5)

Other types included sre illustrated by the forms

s{(6) = £(t, x(6}, x( 5)), (1.6)
(t) = £it, x | It s £19, | {1.7)

and
%(t) = (¢, x | [-%’——}—% , 8 1. (1.8)

Many more different types are contsined in our general class, but enough have
been presented to be suggested of the brosd scope of this study. We remark in
passing that equation (L5) in a sense includes all the other forms listed as
special cases. However, in as much as it is often true that stronger results

are possible when the domains of hereditary dependence 1s more closely identifiled,

it seems proper to adopt notation which allows us to accomplish this easily.




2. Gerersal Concept of Hereditary Dependence

Iet us now proceed with the identification of our general class of
hereditary differential equaticns. In the way of general notaticn we specify
the real line by R, the space of n-dimensional real vectors by Rpg and let
| | denote any convenient norm on R". ILet o denote the set of all closed
subsets of R bounded from above.

A function a@: R - & 13 specified to be a lag function if
t e ot) and at)( (==, t] forall t in R. For lag functions « we shall

consistently denote function values at) by .

i
For arbitrary o ¢ £ and an open and connected set B( RY, let
Q(m, B) denote some distinguizhed class of functions mapping w intc B. For
example, Q in a given situation might represent continuous furctions, piecew
wise continuous functions, measurable functions, or some cther ~onvenient zlass.
If we wish to specifically denote continuous or measurable functions, then Q
will Be replaced by € or M respectively. We note in passing that no restriction

is imposed which excludes tlie poszibility of Q(m, B) being a single function.

In our discussion it iz convenient to specify a function as right-con-

tinuous if it is plecewise continuous and ~ontinuocus from the right.

For a given lag function «a &and a function x in Q{R, B), we adopt the
notation x(a%) for the mapping obtained by, restricting x to the set q.
On other occasions, however, when considering x restricted to.a set o in R,

we shall use the standard notation x|w.



It is also convenient to introdure the notation Ut(B) for the set
of all functions ¢: R—> R such that ¢[ (<0, %] is contained ‘in some speci-
fied Q({-w, t], %), ¢|[t, ») is contained in C{[t, =), B), and it is
understood that Ut(B) is invariant under translations to the left. That is,
x in Ut(B), > 0, and y such that v{(t) = x(t +r) for t in R imply that ¥y
is contained in Ut(B)o

Consider now that we have a function & defined for t 1n some interval
[tos to * 7o) T > 0, and x in U, {B). We formulate a hereditary differ-

0
ential equation of general type to be a functional relationship of the form

x(t) = 6{t, xla, }J, t 2t (2.1)

That is, we are dealing with systems where the change in state at a specified
time +t is functionally dependent on t and the state history of the system

taken with respect to the time set «.. In equation {2.1) X{(t) will in general
T

dencte the right hand derivative of x at t. Considering a lag funct?on a;
we denote by. Eit the smallest interval containing QAo Tre set &;
defined bty the formula
e
a = Uiz f\(-oo,t]; Tin[t, «) ) (2.2)

t T

is called the domain of initial specification at t for reasons that will be

apparent. In setting up an initial data problem for equation (2.1) one
« «
specifies an n-vector function ¢ on R . A function x with x( at ) = o at)
o o
and satisfying equation (2.1) for all t in some interval [tys t, + ), T> 0,

is referred to as a solution of equation (201), The function © or more specif-

'y N o o e‘ 3 o
ically its restriction ¢ @,/ , is referred to as an initial function.

/
o]




For w in @ , we specify || || to be = norm defined on spaces Q(w, R°),
ll ll in turn is used to introduce a notion of continuity into the functional
relationship defined by equation {2.1). For our study it is appropriate that
we require || || to have the following special properties:
(1) If t =mex {7 T in @ }is contained in u Cw, and x is a function
in Q(w, R") , then ||x|u || < ||x!l.
(2) Ifw =uyYvand x is a functlon in Q{w, R} then ||x|| s|| xu|l + ||x]|v|].
(3) For all € 2 0O there exists b>0 such that if x in Qlw, B?) is such
that [x{(6} | <€ forall 6 inw , tken |lx|] < be .
(4) If x is continuous onw and |l x |l= 0, then x 1s identically zero.
(5) For all e > O there exists 8 > © such that it x in Qlw, ¥ is such that
l|x || $€, then|x(t)|$ ae where t = max{~: = inw).

For x in C{w, BJ, B bounded, one ran easily ohserve that the norm defined

by the formula
x|l = sup {1 x(0) 15 6 in wl,

satisfies the imposed conditions. On the other hand, if we assume
Q(w, B?) = M{w, R?) , it is clear that conditions (3) and (5) are not in general

satisfied by the formuls
1
Nx = (7,1 x(0) |Pae)2.

When w is compact, a convenient norm which does meet our conditions is given by

the formula
2 i
12a0 + |x(t)]% )z

x|l = (1 1x(e)

where t = max {t : T in w}.
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Cur first existence theorem for the initisl data problem we have formu-
lated with respect %o equaticn (2.1) bears a strong resemblance to the well

known Chauchy-Peano Theorem for ordinary differential equations.

Theorer 2.1: Suppose for vy in Ut (B), G{t, Y(at)) is a continuous function
Yy :

of w(at) uniformly for t in_some interval ([t,, t, * 1o) and right-

contimuous in t on [t,, t, + To) for each y in Ug (B}, Then for each
on 1or €atl = saen 1or eacl

¢ in Uy (B} there_exists T3 > O such that equstion (2.1) has a solution
in Yy there exists , 1on has a solution

x defined on [1:10”9 t, T Tl) corresponding to o &t t.

Proof. Specify ¢ in Ug (B) and let % be a function defined on R by the
L o)
formula

a/!( =0y to] = @ l ( 'wy-t’o:ﬁ

~

§(t) =0 (t)), for t 2 t_.
g e Ty Co +
Our continuity corditions imply that |G(t, m&at))l bas a limit at t -ty

and we define

My = limojGlt, ¥ )l
-t) “!)t
o]
For arbitrary positive constants » and 7T , let S'b,7) be the set of all
functions vy defined on { - T to + 7] , continuous on [to, to + 1] and
such that
¥, t5] =0 | (-2, t]

¥ (t) - ¢ (t)l = D

and

e (eg) - ¥ (gp) | sy + 1) ey - 5]

for all t, t; and t, in [ty ty + 7]. Clearly the sets S(b,r) are convex

and the Arzels- Ascoli Theorem implies they are compact in the norm
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topology defined by the functional

IxB=sup {|¥ (t)]|: t in [to, t, * 1]}

Choose b,> 0 such that {y )| y- o (t,) ] <£b,} is contained in B.

Letting ¢ be an arbitrary function in - S (bl,x ) we have

| ¥ (a,)(8)-% (a,)(0)] = 0 (2.3)

if 6<t . If t <6< t, t<t + 1, we have
= 0 o = = 0
| w(a)(6)3 0 )(6)] = | ¥ la)(0) ~¢ (¢ )] < (M +1) [e-t | . (2a.b)

Now by the continuity of G (t,w(at) ) in g (ut) for ¢ in Ug (B) ana
)

fixed t, we have the existence of a number 6>0 such that

How(a,) % (a,) Il < & implies
t t
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lG(t, ¥le)) - 6s, ®a))] <

¥

N

3

for arbitrary t in [to, T F T). On the other hand property (3) imposed
on || || implies the existence of a constant n >0 such that {y(8) -'5)(8)] <1

for all 6 in [to, t + 1) implies

o]

leite,, 5, +7) = Blis, b, +5)] <8

Property (2) in turn together with (2.3) allows us Lo conclude thai
lw(e) - Po)] <n for & in ¢, implies that lfe,) - Ha )] <&, Clearly

(2.3) and (2.4) imply we can choose 7, >0 such that }v(acj(u) - 'c\ﬁ(at\(a)l < n

forall t+ in [t , t +7T.] and 6 in «
0 0 2

o nce for t in [t + 7,1
.o Hence for % in “’o’ tg

2.1

we have

ST

2, ¥ley)) - clt, We))i <
for arbitrary ¥ in 8(b;, 7,). Therefore,

[o(t, wle)) - M +M -G(t, Aa))| <5 ,
and

la(t, wla )] <M+ M - G(s, Ho))| + 5 -

Clearly then we may choose T, >0 such that 7, <7, (].V_[O + l)'tl <b

1 1 17
IMO - G(t, r&')(at))] < %9 and




=1ll=
lo(t, wla )] syu +1

+ + s
for all t in [vo, uo-'r'rl} and ¢ in S(blp 'rl)o

Now consider an operator T defined on S(bl, Tl) by the formula
T(w)] (=0, tO] = ‘H(‘“‘”; t039= 4 | (==, to]

4
o(¥)(8) = os) +f, (s, ¥a,))ae,
O

for t din [t , t < For an arbitrarily specified funztion ¥, in

l]"

S(b 'rl), our continuity conditions on G imply that for arbitrary ¢ >0 we

l)
can choose & >0 suchk that V¥ in S(bl’ 'cl) and ]\Lrl - y] <5 implies

1

lo(s, ¥y(a)) - 65, ¥l )i < = .

1

Hence for all t in [t , t_ + v ] and I\yl -y} <3, we bave

t
ITr)(8) - o)1= [, 1a(s,¥ () = als, ¥(a,))lds
0]

e
< = (t-t) se,

1

which implies lm(q;l) - T(¥)] < e and establishes the contimuity of T on

S(bl, "1)" We observe that
t
2 () - ot )] = [, les,v(a,))]as = (M) + 1) (¢ -t) <Dp .

Also we have for arbitrary t, and t, in [to, t +7,] and ¥ in s(b 57,)

1 o}

that



o : t
Tle)e) - Tsy)] s [

|Gis, \y(;asjn}[ds < WM+ L)t -ty
1

Hence it follows that T maps S(b , Tl) into itself and from the Schauder
fixed point theorem we may conclude the existence of a function x in S(bl s Tl)

such that T(x)

x. That is, x is such that x|{-w, t ] = & ( ~coy t, ] snd

x(t)

It

. “" ‘ oo {. % ds.
¢kto, + c&ﬂ Gl s, % s,

for t in {to, to'+ T]]o Taking right hand derivatives it 1s clear that
x(t) = Glt, x(a,))

for t in [to, to & Tl]oThuS X 18 a solution of egquation (2.1} on
[to, to + Tl] and the proof of our theorem is complete.

Let us now proceed by stating and proving an existence and uniqueness
theorem for hereditary equatiocns which reducrs to a standard Picard-Lindelof

type theorem for ordinary differential equations.

~
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Theorem 2.2: Let Glt, Y(a%}) be a right-continucus function of t

: : + 7 a' -{ /(/4.)0 B ose . . <
in [to, t To)’ T, > 0, for ¥ in Jto (R}, Suppcse tnat for arbitary

¥ and ¥ inU. (B) we have that

lo(e, v )) - a{t, ‘i’“kat)}‘ii s K@)H\ft’iat:‘ - ¥ S (2.6 )

where K(t) is an integrable function of t. Then for each functicn

. e

¢ 1in Uto (B), there exists = unique solution x of eguation {2.1)

defined on [to, t., t Tl), for some ~+, > 0, ard corresnponding to ¢
T A A I R o] P 1 s . R N
at t Furthermore, solutions x depend continuous on their initial data.

Proof. The existence of a sclution of’ =quatiocn (2.1} corresponding to ¢ at
tO and defined on some interval [to, to + TE), Ty > 0, follows from Theorem

1. Hence we have only to establish uniqueness and continuous dependence on
initial data.
Suppose Xy and x, are two solutions of (2.1) corresponding to admiss-

able initial functions ﬁ_and @2 . Then we have
: . N, t N

for t in some interval | bo’ to +Tl}, T > 0. Hence using condition (2.6)

we have that



1.
%, (t) - x (8} s o (% ) - o {t 3] + C okl ot - x illa
SRR AR 1Yo/ = %A ft@ VT G xR g T

. t .
’t* + ; Lo ¢ £ P \! - - { +1 ‘,
< g\t fto K{T, {!xl\aq F\,to,,j ) xe(aT f\ktoyti Mlar

where
)t
= ; - ¢ \' 4 «— B N — 5, [
glt) = Jo (t ) o lt )| \!¢lkat0) @2(at0/\i j K {1) dt
t,
By our conditions on || || it follows that there exists a ccnstant b such that

T
g ‘ 1y r 3l A+ ! ED IR
Il xte Nle s t) «x, @ Ot e s eale) ~ o e, KT g (o Nt5t0)

- X Ao, N it ;

How by Gronwall's lemms it follows that

| %y og Nt t1) - x, (g N Tt. e1)i] = pale) (2-8)

2 % t
+h [ v, Ki7)gl T jexp (» ft Kis)ds)dt .
Q

(@

= ¢2 it is clesr that g is identically zero. which in turn implies

X, = %, and the uniqueness of the solution of {2.1) corresponaing to a specified

1 2
initial function. It is also clear that g can be made as small as we like over
any finite interval [t_, t] if i‘@l (&; ) - ®2(&; )l 1s taken sufficiently
small, so continuity with respect to 1niZial data fgllows from {2.8) and our
theorem is proved.

At this point let us observe the situation when the function space

(-5 ], R?) used in the definition of U_ (B) is taken to be single
0
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function. In this case continuity with respect to initial data is only
established in a degenerate, sense, but we, of course,still have the establish-

ment. of a unique solution.

Theorem 2.2 can also be proved using. the contraction principle. To
see this let us specify a function ¢ on R and define U{v) to be the set
of all functions ¥ defined on {(~w tyo+ 1), v+> 0, such that ¥| (- AN
¢ (- ,t_) and ¥llt, t  + 7¥] 1is contained in ¢ ftys to + 71, B). With each

element ¢ in U(T) let us associate the norm

‘kgazfﬂﬁ%w :

We define & mapping T on U(T) by the formula

TV (=5 t5] = 0 (e 58]

t 4 1],

t
Ty(t) ='€P(to) + fto G(s, ‘l‘(as)}d-sﬁ t in [toy o

For each pair V¥, ¥, in U(t) we have

. & .
ITWl(t) = Twe(t’)] = ft K(s)llwl(as) - ‘y2(as)“dsﬁ ¢ {toy tO + T])
(o]

and there must exist b >0 such that
t N
Ty, (o) - T ()il = v [, K(s) [y (a) - ¥,(a))lds
i 0

Hence we conclude that
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t
Irv, -l = (o I K(s)as) v, - ¥lls

-and certainly we may choose T = Tys 8O that
to + T
b ft K(s)ds = B < 1.
o

This, of course, implies T is a contraction on U(Tl), and we may conclude
that there is a unique point W* in U(Tl) such that T(W*) = W*o Since a
function in U(Tl) is a solution of (12) if and only if it is a fixed point
under T, vwe have esteblished existence and uniqueness. Continuous dependence
on initial data 1s, as we have demonstrated, a straightforward application of

Gronwall's lemms.

An important feature of establishing Theorem 2 by setting up a contractitn
mapping, 1s that it reveals a systematic way of constructing a solution x

of equation (12) starting with any element ¥ in U(rl)° Specify

x = lim TV,
n -

and if x 1is estimated by Tn(w) for some finite n; one can easily compute

that
R AO] ER el HORET B

For a result analogous to the Caratheodory theorem for ordinary

differential equations one wmay state the following theorem.
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Theorem 2.3: For y in U {B) let G(%, Y(at)) be a continuous func-
o

tion of vimy) uniformly for t in [t,, ty * 7o5/)s and let G(t, Y(at)) be a

measureable function of t on [to, Tty * To)o If there exists a Lebesque

integrable function m such that |G(t, Y(at))l < m(t) forallt in

[t., t, v ) and ¥ in U. (B), then for ¢ in U, (B) there exists +. > 0
o’ Yo ane Y IR B then 101 LS 1

such that equation (2.1) has a solution x in the extended sense on [to,tO + Tl)

which corresponds to ¢ at t,.

Note: A solution of (2.1) in the extended sense is a function X

such that x (&; J = 0(&% ) andon [t , t + T ) is absolutely continuous
5 o o° o

and satisfied the equation,

[AG)
o

-l

St

T ; ; .
x(t) = ot )+ [ ¢, O x(@ ) ar (

Proof, Let b, be such that [y: |y - o{t j| £2,3C B, and let

1%

S(bl,w‘) be the set of all functions y defined on (- «, tor Tl T,

satisfying the following conditions:

‘1’1 ("00 ) tO] = ‘M(“ aoyto s
e(t) - o(t,)]| s,
for all t in (t,, t, + 7]. It is clear that S(by, T) is convex and closed
in the norm topology determined by the functional

bil = sup (|¥(t) |: t in [ty to + 7To1)
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We define the operator T on S(bly T) by the formula
T(‘H(““’y to]) = Q I(‘°°9 tO]
t
T()(6) = ot.) + [, Gls, ¥(a))ds,
o

for t in (t b, F 7]. Since G is by hypothesis measurable in s, the

o’

N

operator T 1is continuous on S(bl’ 7). lLet [Wn‘ be any sequence of functions

in S(bl, T) converging to V. Clearly we have that
7 t v
[TV (£) = (v ()| = [ la(s, o)) - &ls, vlay))]as.
' o)

Now by hypothesis G(s, W(as)) is continuous in w(ag) uniformly for s in

[t,, t, * 1], so
!G(Sy II»’(as)) - G(89 Wn(os))! -0

uniformly for s in [to, to + T] as n - o, Furthermore, the functions

la(s, w(as)) - G(s, Wn(as))] are measurable in s and such that

la(s, w(ay)) = 6(s, v (a)))] = 2a(s)

for s in [to, t], t < t, + T . Hence by Lebesgue 's theorem on majorized

sequences we have that

t
i 1a(s, ¥(a))) ~ G(s, ¥ (a))|ds -0
o
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as n —»w», and it follows that T is continuous in S(bl, T). Clearly

Ty > 0 may be chosen such that

t
[T(¥)(t) ~ #t )] = f, m(s)ds = by
o

forall t in [to, t o+ T

;] end ¥ in (b, Tl)y 80

2(8(by, 7,)) C 8(bp, 7,)-

t
Also since ft m(s)ds 1is a uniformly continuous function on [to, b+ Tl],
» o ‘ ) )

it follows that for every € >0 we may choose & number 17 = n(€) >0 such

that t,, t, 1in £, t, +7,] and ]tl - t2| <7 imply

4
IT(¥)(ty) = T(¥) (b)) ] = j‘ti m(s)ds <e .

Thus T(S(bI? Tl)) is a equicontinuous family of functions and it f@llows from
the Arzela-Ascoli Theorem that T(S(blj Tl)) is conditionally compact. But,
of course, this implies T 1is completely continuous and we may employ the
Schauder fixed point theorem to conclude the existence of a fixed point under
T. This fixed point is obviously abgolutely continuous and satisfies equation

(2.7), so the proof of our theorem is complete.
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Reconsidering at this point the hypotheses stated in our existence
and uniqueness theorems thus far, we observe that our direct structural
requirements on the vector functional G are rather strong whereas no
specified structure is required in our initial functions, We shail now
formulate our class of differential equations of hereditary type iﬁ such
a way as to allow us to draw more on the structure of initial functions in
questions of existence and uniqueness of solutions and require less direct
structural assumptions on our functional forms., To proceed, let us specify

a lag function o and define the set of functions

Q

apto(B) = {x(at)x t>t

oy X 1In Uto(B)} o

We observe that in equation (2,1), G can be thought of as a function mapping
[tys to + 1) x Q“ato(B) into RM, A little investigation will quickly reveal,
however, that the function space from which the second argument of G is
takenisextremelyawkward indeed when we try to introduce a reasonable notion of
continuity, It is not at all immediately clear what structure should be used

to define a topology., We shall take our clue, however, from a generalized

notion of translation,

Let wc (==, 1] be a specified fixed element in 2, We shall call a

lag function o proper if for some chosen set w we have:

(1) For each t in R there exists a continuous mapping hy of w

into a, which preserves otder,




wgl=

(2) The family of functions {htg t in R} depend continuously
on t, That is;, for every € > 0 there exists a & = &§(t,e) > 0 such that

|t = 7| <6 implies

¢ 0 inwl<e

Ih, = b || = sup {Ih (6) ~h (0}

Let us define x: R + B, and for every t in R let the mapping

Hix on o be defined by the formula
Htx(e ) = x(ht(o ), © in w 3.1)
Since we have a well defined norm on Q(w , B), for two functions x: R + B

and y: R + B we can express the distance p between two functions x(at)

and y(a_) by the formula

p(x(a), y(a)) =i[H x - B yl | (3.2)
The notion of continuity imposed by this metric seems most natural and
specializes for particular cases to the notion of continuity traditionally
employed, For example, consider equation (14) where a, = [t =1, t] for all
t in R, We may select = [=1, O] and define

h(0) =t+0, 0in w (3,.3)

which is, of course, a simple translation of the type usually employed, We
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are also free, however, to introduce a weighting factor such as illustrated
by defining ht by the formula

g

nfe)=t+6 ,60inw, & 20. (3.4)

Classes of mappings of the type {h ¢ t in R } are denoted as
translation cilasses.

Let us now proceed to formulate a class of differential equations with
hereditary dependence based on proper lag functions and the topology of
Q{w,B). Specifically, let us defipne a functiocn

F: [ty to +75) x Qw,B) >R, 1, > 0, and consider the functional relation
x(t) = Fit, Hx)y ot o2t (3.5}

As before, the initial data problem is set up by specifying a n-vector function
¢ on R. A function x such that x(&%o) = ¢&§£0> and which satisfies
equation (3.5} on [ ter to T ) for some 7> 0 is referred to a a solution
corresponding to ¢ at too

To illustrate our structure further we note that test sets w may be

defined by the formulas

w = {0},

w= {0, - Ty, - Toy..., T 3,
w= {0, -1, -2,... ¥
w=[~-1, 0],




and
w = (:=-o:D 0]9

respectively for equations (1.1), (1.2), (1.3), (1.4), and (1.5); and in each

case ht and Ht may be specified by the expressions
ht(O) =t+0, 6 inw ,
and
Htx(e) = x(ht(e)) =x(t+06) , 0 inw.,

For equation (1,6) we may take

1
w = {?9 1}

h,(0) = 06t;, 6 € w,

Htx(e) = x(h,(0)) = x(0t), O e w
and for equation (1.8),

w= [0, 1]
= (1 - L=l
h.(0) = (1 - ©) (t+1) + 0t, O in w

Bex(8) = x(h (0) = x((1 +0) &= +00), © in;
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We remark in passing that general hereditary equations such as we have
defined are not necessarily autonomous even if t does not occur explicitly as

a variable, That is, a hereditary equation of the form
x(t) = O(Htx),, t 2t , (3.6)

is not necessarily autonomous, In the cases where lag functions such as those
in examples (1.1); (1.2), (1.3), (1.4), and (1.5) are involved, however, equation

(3.6) is autonomous,

An extended concept of hereditary dependence worthy of mention is
incorporated in the notion of a matrix lag function, That is, we could consider
a matrix @ of lag functions Gijp 1, § = 1,000,n. Such a construction would
be useful if one wishes to distinguish between the hereditary dependence of the

various components in a system, In particular one may wish to consider a system

of the form

il iz in
ﬁi(t) = Fi(t° He %9, Ht Rpgo00s Ht xn)D 1=1,2,,.0,n,

where, of course, the operators Hj'j are determined by the lag functions
aij in the manner previously discussed, Clearly this system can be written more
compactly as

() = F(t, B x),

where




1
F(t, Hx) = (F (t; Hx),oo0,Fplty Hyx))
and

i il i2 in
Htx = (Ht X, Ht X90009Ht x)o

A norm on the elements Htx can obviously be constructed by considering a
is
i
matrix norm for matrices of the form ( ||[H_ x[]).
It may also be convenient to consider split hereditary dependence, That
is, it may be an advantage to consider equations of the form

i

®(t) = F(e, Htx9 Hw(t)X)°

2
where Ht and H ( )9 7(t) < t, correspond to different lag functions. This
T(t -

will mainly be true when the dependence of F on the arguments Hex and

v 1]
HT(t)x is distinguishable, In particular the dependence of F on H#(t)x might

be only continuous whereas the dependence on Htx might be linear. To illustrate

further considefr an equation of the form
®(t) = £(t, x(t - 1), x(t))

where f(t, u, v) 1is continuous on R x R® x R® and linear in v, A straight-
forward argument will show that corresponding to each continuous initial function

specified on [=1, 0] that this equation has a unique solution existing for all

t >0,



4, More Existence and Uniqueness Theorems

Let us now state theorems analogous to Theorems 2.1, 2.2, and

2.3 where o is assumed to be a proper lag function.

Theorem L.1: If F(t,H{W) is a continuous function of

Hy for t, ¥ in [to,to+fo) X Uto(B), T, > 0, and right-continuous

in t forall ¥ in U (B), then for each ¢ in U,
c )

exists 71,> O such that equation  (3.5) has a soiution x on

(B) there

Y
[to,to Tl) corresponding to ¢ at t .

Theorem 4.2: Let F(t,Htw) be a right-continuous function of t

on [t ,t +r ), >0, for ¢ in U, (B). Suppose that for arbitrary
- oo o070 _— - to

v and y” in UL (B) we have that
o

| F(t,B0) - Fle,H47) | K(t) || By - H " |,

<
=

wvhere K(t) is an integrable function of t. Then for each function ¢

in Ut (B) there exists a unique solution X of equation (3.5) defined
o

on [to,to* Tl), for some > 0, and corresponding to ¢ -at t,e Further-

R

more, solutions x  depend continuously-on their-initial data.
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Theorem k4.3: For ¢ ia U, (B) 1let F(t,Htw) be a continuous func-
o

tion of H. ¥ for t in [to,to+ to), and let F(t,Htw) be a measurable

function of t on [to,to+ ro)° If there exists a Lebesgue integrable func-
tion m such thet | G(t,H )| gm (t) for a1l t in [t ,t *7) and ¢

in U, (B), then for ¢ in U,
Q o]

(B) there exists 7, » 0 such that equation

(3.5) has a solution X in the extended sense on [to,to+ T which corres-

3§
1/

ponds to ¢ at t_.

Theorems 4.1 , 4.2 , and 4.3 can be proved by essentially the same argu-
ments used respectively for Theorems 2.1 , 2.2 , and 2.3,

For w in Q@ and B an open connected set in Rn, let us define
P(w,B) to be the set of all functions ¢ : w*B which are right-continuous.
For ¢ in P(R,Rn),Htw is said to be a right-continuous function of t on
an interval in R if Htw is a continuocus function of 't except on a clos-
ed discrete set-and for t in this exceptional discrete set Htw is contin-

uous from the right and lim H ¢ exists in a function in P(w,R").
s>t-

Theorem k4.k: Let F be continuous on [to,to+ To) X P(w,B).

Suppose that for all (t,¥%) in [to,to+ To) X Uy (B), H,v is right-continu-
o -

ous. Then for each ¢ in U, (B) there exists 1, >0 such that equation (3.5)

t
o]

1

l) corresponding to ¢ at to.

has a solution x on [to’t6+ T
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Proof. Let ¢y be an arbitrary function in Ut (B) and let
)

t* be an arbitrary but fixed point in [to,to + To)u Since F is con-

tinuous on [t, , a) X P(w, B), for every € > O there exists a number

(=]

6§ = 6(e, t*) > 0 such that mex lt - t*|, [|€ - Ht*wl[} < § implies
IF(t, €) - F(t*, H )| <e .

If we suppose t* to be a point of continuity of Htw, then there exists

a positive number §. = 61(6, t*) < & such that |t - t*| < 6. implies

1 1
|[E v - Hw|| < 8. Hence [t - t*] < 8, implies |F(t,H.y) - F(t%,H )| < e,
and it follows that t* is a point of continuity of F(t, Ht¢) as a func-

tion of t. Suppose t¥* is a point of discontinuity of Htw and let

H lim H_¥. Since Ht*:Wis contained in P(m, B) it follows that

-V =
t* ¢ ate. b

for every € > O there exists a number n = n{e, t*) > O such that

max {|t - t*|, ||¢ - Ht*—w||} < n implies

[F(t, €) - F(t*, H, ¥)| <.
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But there exists n, > O such that n

1 = nl(s, t*) < n and

1

0 <t* -t <n, implies [lntw - Ht,;wll < n. Hence 0 < t*-t <y

1
implies |F(t, Hy) - F(t¥, K, ¥)| < e and it follows that

. ii:*_ F(t, Hy) = F(t, H O
Thus F(t, Ht¢) has the same points of continuity and discontinuity

as Htw and the points of-discontinuity are of the same type. It
follows, of course, that F(t,"Htw)is a right continuous function of ¢t
on [to,to + 'ro)° To complete  the proof of this Theorem we have only to

apply Theorem k.1.

Corollary: If in Theorem h.k we replace P(w,B) by C(w,B) and replace

"right-continuous”" by "continuous' whereever it occurs, then we still have

a true theorem.

Now for w in © and B an open-and connected subset of R" let

us define

H(w,B) = { Htw : pin U t ). : 4.1
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In all our existence theorems thus far-our hypotheses have included an
explicit continuity condition for F or G with respect to t as it
occurs in both the first and second argument. In our next theorem we
shall not include such a condition but shall instead require continuity

on [to,to +To) X H(w, B) only. However, we shall first need to introduce

the notion of uniform hereditary dependence.

Consider two functions ¢ and ¢ in Ut (B) and an interval
)

[t.,t.] in R. We shall denote the norm of the difference
1’72 .

Htw - Ht¢ taken with respect to the restricted domain 'hzl(atﬂ [tl’tE] ) by

|| 5,9 - 8.0 ||
t t ot

. . e 4 -1
With respect to the particular restriction h, (at(7(—oo,1]) we shall use the

notation

|| How - oo [

« 1

« T

Hy  denotes the restriction of Hoy to h;l(at(\(—oo,r]).
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“«t
o
If for each ¢ in U_ (B) Hov is uniformly continuous in t for

t
o]

t ;'to’ then equation (3.5) is said to have uniform hereditary depend-

ence (with respect to U, (B)).
o

Theorem 4.5 : Let F be continuous on [to,to + To) X H(w,B) and

suppose equation (3.5) has uniform-hereditary dependence. Then for each

¢ in U, (B) there exists 14> 0 such that equation (3.5) has a solution
0

X on [to,to + 1,) corresponding to ¢ at t = Furthermore, x is

°

continuously differentiable on [to,to + Tl) from the right.

Proof : Choosing ¢ in U, (B) we observe that the continuity
o

of F on [to,to + ro) X H(w , B) implies that for every € > O there

exists a number & = &(e, t) such that if max {]t - t], |] HoY - H ¥ 1]} <8,

then

IF(t, B¥) - F(1, HTw)[ <€,

Now there exists a constant b such that
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A

Wap -2 il < {l8y-809 ilt (k.2)

+ b max {lw(ht(e) ) - W(hr(e) )| ht(e) in at\‘gto’

-
a

hT(e) in aé\ to, t,T in [to,to + To]}'

Since ¢ is uniformly continuous on [to,to + Tl] » 0 < Ty s T

there exists n>0 such that II ht - hTII < n implies the second term on

the right hand side of (L.2) is On the other hand using the

§
o
2b

continuity of h and our condition of uniform hereditary dependence we

t

can choose u>0 such that [t - t| < p implies

8
Il ohg=n ll<n  ama  [IRy-u9ll <% .

«t
o

Then choosing 1 such that [t - t| < min {6,u } implies

|| Hv - H v [| < 6§ and we have in turn that

IF(t,Htw) - F(T,HTw)l < e .

We conclude, therefore, that F(t,Htw) is a continuous function of t and

our theorem follows as a consequence  of Theorem L4.1.
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Corollary : Let F be continuous on [to,to + To) X C(w,B).

Then for any uniformly continuous function ¢ in C( (- oo, to], B)

there exists a number Tl>0 such that equation (3.5) has a solution

x defined on [to,to + ro) corresponding to ¢ at t_. Furthermore,

X 1is continuously differentiable on [to,to+ rl) from the right.

Proof. Let Q( (-oo,to],Rn) used in the definition of

Ut (B) consist of the single function ¢. Since ¢ 1is uniformly
o)

continuous, we have that given any €>0 there exists 6§>0 such that

| hy - hT|! < 6 implies |¢ (n.(8) ) - ¢ (n (o) )| <€ for all 6 in
h—l( (-oo,to])o But by the continuity of h - we may choose n>0  such
that |t - 1] < n implies |] by - hT!! < § and consequently implies

| o (ht(e) ) - ¢(ht(e) )] < € . Hence we may conclude that we have uniform

hereditary dependence and apply Theorem 4.5 to complete our proof.

Theorem 4.6: Let F be continuous on [to,to + ro) X P(w,B) where

is compact and II || is defined by the formula

e ] =<« I |¢(e)|2d9 4 e (¢) |2 )1/2,

W

t =max {6 : 8 in w }. Then for any function ¢ in P( (-oo,to],B)

w
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there exists a number Tl>0 such that equation (3.5) has a solution

x defined on [to,to + To) corresponding to ¢ at to° Furthermore,

X is continuously differentiable on [to,to + 11) frem the right.

Proof. Let U, (B) be defined so that U( (-co0,t I, R™)
(o}

U( (-oo,to],Rn) = P( (-00,t_1,B). the continuity of F on
[to,to + To) X P(w,B) implies that for every >0 there exists a

number § = 6(e,t) such that if max { |t - |, |] Hey - HTw,[i } < &, then

|F(t,Htw) - F(1, HTw)! <e .

By the right-continuity of ¥ and the compactness of w we can establish
the existence of a number n = n(8) > O such that |] h, - h_ || < n(6)
implies || Htw - Hrw || < 6. The continuous dependence of the function
h, on t implies that we may choose u = u(n,t) ‘such that [t - Tl <u
implies H,ht - hTII <n . Therefore, choosing Tt such that

[t - 1| < min {8,u} implies |F(t,Ht¢) - F(r,HTw)I <g, and we may

conclude that F(t,Htw) is a continuous function of ‘t. Hence our theorem

follows as a consequence of Theorem L.1l.




Our next theorem is a generalization of Theorem 4.2 which draws
attention to the special nature of hereditary differential equations.
Clearly the statement and results of this theorem would not even be meaning-

ful for differential equations in.a Banach space generally.

Theorem 4.7 : Let G(t,w(at) ) be a right continuous function of t
for all t in [to,to + ro) » 1,50 , and all ¥ in Uto(B)° For fixed
n>0 let B, = ana, s Xt = at\at-n , and for each ¢ in Uto(B) ,lef

C)(t,w(at) ) be an n-vector function continuous in w(Bt) uniformly in

t and measurable in t on [to,to + ro) . For arbitrary ¢ ¢~ in

Ut (B) , let
o

IG(t’d’(at) ) - G(ta‘b-‘(at) ) I; I @(t,‘P(Bt) ) - @(t,lb'(Bt) )I (’4,2)

k() || w(x) - v (8) |],

where K (t) is a positive integrable function .~ If there exists.an integrable

function m om [t ,t + t ) such that | @ (¢, w(Bt) ) |'s m(t) , then for

each ¢ in U, (B) , there exists.a unique solution. x of equation (2.1)
. o -
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defined on [to,to + 111 , for some Tl>0 , and corresponding to )

at 'to, Furthermore, solutions .x depend continuously from the right

on their initial data.

Proof. The existence, at least in the extended sense, of a

solution of. (2.1) corresponding to ¢ at to and defined on some in-

terval [to,to + 7 ,.12>O s follows from Theorem 3:3.° On the other

2)
hand, our hypothesis that G(t,w(at)')' in ‘a right-continuous function of t

implies that any solution in the extended sense is a soclution in the usual
-sense. . Hence we have .only to establish uniqueness and continuous dependence
on initial data.

Suppose xl and x2 are two solutions of (2,1) corresponding to ¢l

and ¢2 in Ut (B). Then we have
0

t
B = %060 = 4y(e) = () + [ Oy e) ) = Blrayla) ) dar g g

o}

for t in some interval [to,to + Tl], T, > 0. -Using condition (L.2) we

1

have

t
| x (€)= x,(8) [ < | 670t ) = o(t ) | + Itol'@ (r,x (8 ) = @lrxy(8))|ar

t
: L k(O x,(v,) = x,(r )11,
o
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where K(t) is a positive integrable function:
the formula

t
B(6) = 193(t5) = 05(5)] + ey = oyl |
(o]

o

and using the fact that

Defining a function g by

t

KOa + [ ] 0 (8,))- B(rxy(8)) ar
t

o

12 () = (0 ) T < T o = ol 1+ x (g Tegs tD-x,(5nlt 58] ||, (bod)

|
‘-tO

we have that

t
%, (£)-x,(£)] < alt) + Jt K(0)| |, B nlt st D=x, 08 e r 1| ar. (L.5)
o
By our conditions on || || it follows that there exists a constant b such
that

| 1y (o g 8 D=xylx, 1 Cegs tD1 2 bs(e) + |

X5

t

t

K(1) lel(Yrﬂ[to’T])’

o

(rn [t5 TDIlar)



Now using Gronwall's lemma-it follows that

t

t t
||xl(b’tn[to,t])-xz(b’tn[to,t])|| < bg(t) + b2 I K{t)g(t) exp (bJ K(s)ds)dr . (4.6)
(o] T )

Choosing t - to <0y = min {rl,n} and utilizing.our hypothesis on ® and
Lebesgue's theorem on majorized sequences; we may conclude that for every

€ > 0 we can choose .§ > O . such that ||¢l-¢2|i < § - implies g(t) < e.

‘Hence clearly (4.6) implies uniqueness and continuous dependence of solu-

tions of (2.1) with respect to initial data for t - t,osn, o If

n, < T, we may replace equation (4.3) by the equation

t
x (£)-x,() = x,(t_ + n)=x,(t_+n) + [t . Oy (a )6, ),
(o]

and repeating our argument, uniqueness and continuous dependence of solutions

with respect to initial data may be extended for t.—,to_; min {Tl,2nl} o

If 'k 1is the smallest integer-such.that knl:; Ty» then the indicated step
by step procedure may be repeated. k times to establish uniquesness and con-

tinuous dependence for t - to';-r and complete our proof.

1
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